Tractable structure search in the presence of latent variables
نویسندگان
چکیده
The problem of learning the structure of a DAG model in the presence of latent variables presents many formidable challenges. In particular there are an innnite number of latent variable models to consider, and these models possess features which make them hard to work with. We describe a class of graphical models which can represent the conditional independence structure induced by a latent variable model over the observed margin. We give a parametrization of the set of Gaussian distributions with conditional independence structure given by a MAG model. The models are illustrated via a simple example. Different estimation techniques are discussed in the context of Zellner's Seemingly Unrelated Regression (SUR) models.
منابع مشابه
Spectral Algorithms for Graphical Models Lecturer : Eric
Modern machine learning tasks often deal with high-dimensional data. One typically makes some assumption on structure, like sparsity, to make learning tractable over high-dimensional instances. Another common assumption on structure is that of latent variables in the generative model. In latent variable models, one attempts to perform inference not only on observed variables, but also on unobse...
متن کاملEfficient Latent Variable Graphical Model Selection via Split Bregman Method
We consider the problem of covariance matrix estimation in the presence of latent variables. Under suitable conditions, it is possible to learn the marginal covariance matrix of the observed variables via a tractable convex program, where the concentration matrix of the observed variables is decomposed into a sparse matrix (representing the graphical structure of the observed variables) and a l...
متن کاملUpgrading isovist models by introducing a new set of variables based on the position of the open edges
Introduction: There are several theories about the effect of space configuration (structure) on the psychological perception of the environment. However, there is no comprehensive and consensus model that can be used to analyze and predict spatial quality or human behavior in the environment based on spatial configuration. Theories of environmental preferences as well as navigation often empha...
متن کاملDynamic Bayesian Networks with Deterministic Latent Tables
The application of latent/hidden variable Dynamic Bayesian Networks is constrained by the complexity of marginalising over latent variables. For this reason either small latent dimensions or Gaussian latent conditional tables linearly dependent on past states are typically considered in order that inference is tractable. We suggest an alternative approach in which the latent variables are model...
متن کاملمدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری
Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis. One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...
متن کامل